Last Time:

- Gauss Lemma
- \(\text{f irred mod } p \Rightarrow \text{irred ov } \mathbb{Q} \)
- Eisenstein.

\[\text{Lemma: Let } f, g \in \mathbb{Z}[x] \text{ be primitive, } \]
\[\text{so } \gcd(\text{coefficient of } f) = \pm 1, \ f \neq 0, \]
\[\text{and likewise for } g. \text{ Then } fg \text{ is primitive.} \]

- By induction on degree of \(fg \). Obvious when \(fg \) constant: \(fg = \pm 1 \).
- Suppose true for \(\deg(fg) \leq d \), and let

\[f = a_nx^n + \ldots + a_0 \quad \text{and } \quad g = b_mx^m + \ldots + b_0. \]

\[m + n = d + 1, \quad f, g \text{ primitive.} \]

Write \(f = ax^n + A \tilde{f}(x) \) where \(A = \gcd(a_{n-1}, \ldots, a_0), \ \tilde{f}(x) \text{ primitive.} \)

Thus

\[fg = (anb + \tilde{f}(x)) + A \tilde{f}(x)g(x), \]
\[\text{primitive, primitive, by induction.} \]

Thus \(\gcd(\text{coeffs of } fg) = \gcd(anA) = \pm 1 \) by assumption on \(f \).
Bases of fields

Recall the basic construction of new fields for all f:

1. Given F, if $\exists f \in F[x]$ s.t. f is irreducible and has no roots in F, define a new ring $K = F[x]/(f)$.

 K is a field and a fin-dim vector space over F.

2. This is more transcendental. Let $K = \text{Quot}(F[x])$.

 Now you can repeat (1) taking $F = K$.

Note: We've seen (1) produces a field before. For completeness: let $\alpha = x \in K$ be the image of x under $F[x] \rightarrow K$. By long division of polynomials, any $h \in F[x]$ can be written $h = q \alpha^r + r$ where $\deg(r) < \deg(h)$. Moreover, given h and f, q and r are unique; this shows $K = \text{Span}(\sum_{i=0}^{\deg(f)-1} x^i)$ as an F-vector space.

K is a field b/c $F[x]$ is a PID and $(f) + (\alpha)$. Here (f) is maximal.

Thinking now of f as a polynomial of coeff's in K, note that $f(\alpha) = 0$ by def'n of K. Here we think of K as the ring obtained by adjoining a root (any root!) of f to F.
Since our main tool for making/studying fields will be by solving polynomials, let's gather some basics.

Def. Let $R \subseteq S$ be rings. $y \in S$ is called algebraic over R if $f(y) = 0 \in S$.

S is called algebraic over R if every $y \in S$ is algebraic over R.

Def. Let L be a field. L is called algebraically closed if every $f \in \mathbb{F}[x]$ has a root in L.

An algebraic closure for a field K is a field \overline{K} together with an embedding homomorphism $K \hookrightarrow \overline{K}$ such that:

1. \overline{K} is algebraically closed.
2. \overline{K} is algebraic over K.

We'll see:

The any field K admits an algebraic closure \overline{K}.

\overline{K} is unique up to K-linear isomorphism.
Proof. Fix a algebraic and \(f \in K[x], \ K \subset L. \)

TFAE:

1. \(f \) is monic and \(\text{deg}(f) = \text{deg}(f_K) \)
2. \(f \) is monic and \(f \) is a polynomial of least degree with \(f(a) = 0, \ a \neq 0. \)
3. \(f \) is monic, irreducible, and \(f(a) = 0. \)

\(\rightarrow (1) \Rightarrow (2): \) \(f = \text{Ker}(f_K) \Rightarrow f \) is least deg polynomial \(f(a) = 0; \) by Euclid, any two such polynomials related by a divisor \(d, \) have monicity define \(f. \)

\((2) \Rightarrow (3): \) If \(f \) were reducible, \(f(a) = g(a) h(a); \) that \(g(a) h(a) = 0 \)

means \(a \) satisfies \(g \) or \(h, \) violating "least degree" of \(f. \) Monicity defines \(f. \)

\((3) \Rightarrow (1): \) \((0) = (f) \subset \text{Ker}; \) since \(f \) irreducible, \(\langle f \rangle \) is prime, and since \(PID \) has divisor \(1, \ f = \text{Ker}. \) Monicity defines \(f \) among such generators. \(\Box \)

Def. The unique \(f \in K[x] \) as above is called the irreducible polynomial of \(a. \)

We can imagine adjoining a root \(\alpha \) to \(f, \) to obtain \(K_1 = K(\alpha). \)

Then \(\alpha \in K_1[x], \) and so forth. All these \(K_i \) will be fields containing the original \(K \) as a subfield.
So we review basic facts about field extensions.

Def. A field extension is a choice of homomorphism
\[K \to L, \]
where \(L, K \) are fields.

Rmk. Since \(L, K \) are fields, the homomorphism is an injection.

Rmk. We often say "let \(K \leq L \) be a field extension" by identifying \(K \) with the image; we also say "let \(L/K \) be an extension."

Rmk. We also say "\(L \) is an extension of \(K \)."

This makes \(L \) into a \(K \)-algebra, hence a \(K \)-module. (I.e., a \(K \)-vector space.)

Def. The dimension

\[\dim_K L =: [L:K] \]

is called the **degree** of \(L \) over \(K \).

If the degree is finite, we say \(L \) is a **finite** extension of \(K \).
Prop: If $K \subseteq L$ is a finite extension, every $\alpha \in L$ is algebraic over K.

Proof: $1, \alpha, \ldots, \alpha^{[L:K]}$ cannot be linearly independent. Hence $\exists \lambda \in K^*$ such that

$$a_0 + a_1 \alpha + \cdots + a_{[L:K]} \alpha^{[L:K]} = 0.$$

Prop: Let $K \subseteq L$ be a field extension, $\alpha \in L$, and $K(\alpha) \subseteq L$ the subring generated by α. If α is algebraic, $K(\alpha)$ is a field.

Proof: The induced map $K(\alpha) \rightarrow L$ has kernel since α is algebraic. Since L a domain (field), kernel is prime, hence maximal since $K(\alpha)$ is a PID.

Prop: Let α be algebraic, and let $f \in K(\alpha)$ generate the kernel. Then

$$\dim_K K(\alpha) = \deg(f).$$

Proof: By any division, any $[g] \in K(\alpha)/f$ is represented by some $g \in K(\alpha)$ of degree $\leq \deg f$. Hence $1, \alpha, \ldots, \alpha^{\deg f-1}$ span $K(\alpha)$. Otherwise, they are linearly independent — else a lesser degree polynomial would be solvable by α, contradicting f generating α. //
Prop. Let \(K_0 \subseteq K_1 \subseteq K_2 \) be fields.

Then

\[
[K_2 : K_0] = [K_2 : K_1] [K_1 : K_0].
\]

Proof: Let \(\alpha_1, \ldots, \alpha_n \) be a basis for \(K_1 \) over \(K_0 \)

\(\beta_1, \ldots, \beta_m \)

be a basis for \(K_2 \) over \(K_1 \).

We claim \(\alpha_i \beta_j \) is a basis for \(K_2 \) over \(K_0 \).

\text{Spanning: Obvious.} \quad y \in K_2 \Rightarrow y = \sum \beta_j \alpha_i \quad (\beta_j \in K_2 \text{ over } K_1)

\Rightarrow \quad \beta_j = \sum \alpha_i \beta_j \quad \quad (\alpha_i \in K_1 \text{ over } K_0)

\Rightarrow \quad y = \sum \alpha_i \beta_j \quad \quad (y \in K_2 \text{ over } K_0)

\text{Linear independence: If} \quad 0 = \sum_{ij} a_{ij} \alpha_i \beta_j \quad \text{(since } \beta_j \text{ are lin ind over } K_1) \quad \Rightarrow \quad 0 = \sum a_{ij} \beta_j \quad \text{(since } \alpha_i \text{ are lin ind over } K_0) \quad \Rightarrow \quad 0 = a_{ij} \forall ij \quad \text{(since } a_{ij} \text{ are lin ind over } K_0) \]

In what follows, it'll be convenient to know that algebraic closures exist.

\text{Def: A field } L \text{ is called algebraically closed if every } f \in L[x] \text{ has a root in } L. \]

An algebraic closure of \(K \) is an algebraically closed \(L \) such that \(L \) is algebraic over \(K \).

Thm: For any \(K \), an algebraic closure \(\overline{K} \) exists. Any two

are isomorphic as fields over \(K \).
Prop. Let \(L = K[x] \), if \(\phi \) is \(K \)-module homomorphism of \(K \)-algebras. Then for every root of \(f \in K \), \(\exists ! K \)-linear embedding \(L \rightarrow K \).

Proof:

\[
\begin{array}{ccc}
K[x] & \xrightarrow{\phi} & K \\
/ (f) & \phi & \\
\phi \circ \phi^{-1} : & \phi & \\
/ \alpha & \phi & \\
L & \phi^{-1} & \\
\end{array}
\]

So it suffices to show any \(K[x]/(f) \xrightarrow{\phi^*} K \) is uniquely determined by a choice of root \(\beta \). This is clear by \(\text{univ prop of quotients} \):

\[
\begin{array}{ccc}
K[x] & \xrightarrow{\phi} & K \\
/ (f) & \phi & \\
\phi^{-1} & \phi^{-1} & \\
/ \alpha & \phi & \\
L & \phi & \\
\end{array}
\]

- \(\phi \) uniquely determined by \(\phi(x) = : \beta \) (\(\text{univ prop of } K[x] \))
- \(\exists ! \phi \) iff \(f(\beta) = 0 \) (so \(f \in K[\bar{\beta}] \)), and \(\exists ! \phi \) when a lift exists. \(\Box \)
Prove that \(L/K \) be an extension of degree \(n \), and suppose \(L = K(\alpha) \), and let \(g \) be the minimal polynomial of \(\alpha \) (all coefficients in \(K \)).

TFAE:

1. \(L \) has a \(K \)-algebra map \(L \to \overline{K} \), for any algebraic closure \(\overline{K} \) of \(K \).
2. \(g \) has \(n \) distinct roots in any algebraic closure \(\overline{K} \) of \(K \).
3. \(\gcd(g, g') = 1 \) is a unit.
4. \(g' \neq 0 \).
5. Either \(\text{char}(K) = 0 \) or \(n(x^{p}) \) is a unit
 - If \(\text{char}(K) = p > 0 \), \(g \neq h^{p} \) for some \(h \in \overline{K}^{\times} \).
6. \(g'(\alpha) \neq 0 \).