Rmk: Recall that $x \in R$ is called irreducible if x is not a unit, and

$$x = u \cdot v \implies u \text{ or } v \text{ is a unit in } R.$$

x is called prime if (x) is a prime ideal—i.e.,

$$x = u \cdot v \implies u \text{ or } v \text{ is a multiple of } x.$$

In a domain, every prime is irreducible. What about converse?

Let R be a Noetherian domain. Then TFAE:

1. Every irreducible is prime.
2. R is a UFD.

It's an open problem in H.W to show that R UFD $\implies \mathbb{Z}[x]$ UFD. This is why looking for primes in $\mathbb{Z}[x]$ is the same as looking for irreducibles in $\mathbb{Z}[x].$

Rmk: There's an obvious obstruction to $f(x) \in \mathbb{Z}[x]$ being irreducible—$\gcd(\text{coefficients of } f) \geq 2$. For then

$$f = \gcd(\text{coefficients of } f) \cdot f_0$$

where \gcd is not a unit. This is also an obstruction to testing irreducibility of $f(x) \in \mathbb{Z}[x]$ by passing to $\mathbb{Q}(x)$—obviously, \gcd is a unit in $\mathbb{Q}(x)$. The Gauss lemma says \gcd is only obstruction.
Then (Gauss Lemma)

let \(g, h \in \mathbb{Z}[x] \), monic. If
\[
g, h \in \mathbb{Z}[x]
\]
then
\[
gh \in \mathbb{Z}[x]
\]

More generally, if \(R \) is a UFD and \(K = \text{Quot}(R) \),
then any factorization of \(f \in \mathbb{Z}[x] \) by \(g, h \in \mathbb{K}[x] \)
induces a factorization of \(f \) in \(\mathbb{K}[x] \).

Gauss Lemma If \(f \in \mathbb{Z}[x] \) is irreducible, then either
- \(f \) is a prime integer (constant poly, prime), or
- \(\gcd(\text{coeffs of } f) = 1 \), and \(f \in \mathbb{Q}[x] \) is irreducible.

Let \(R \) be a UFD — then "gcd" has a meaning. Given \(f \in \mathbb{K}[x] \), let \(c(f) \in K \) be the least sat
\[
f(x) = c(f) \cdot f_0(x)
\]
c is the "content" of \(f \).

where \(f_0(x) \in \mathbb{K}[x] \) is a polynomial w/ \(\gcd(\text{coeffs of } f_0) \) a unit.
\(c(f) \) is well-defined up to units in \(R \) — if \(R = \mathbb{Z} \), one can take \(c(f) \)
to be \(\left(\text{denominator of coeffs of } f \right)^{-1} \).

Note \(c(f) \in R \iff f \in \mathbb{R}[x] \).
Now, if \(g = c(g)g_0 \) \(h = c(h)h_0 \), we have

\[gh = (c(g)c(h))g_0 h_0. \]

Thus \(gh \in \mathbb{R}[x] \iff c(g)c(h) \in \mathbb{R} \). We conclude that if \(f(x) = gh \), then

\[f(x) = (c(g)c(h))g_0 h_0 \]

is a factorization of \(f \) in \(\mathbb{R}[x] \).

When \(g, h \) are monic, the leading coefficient of \(f = gh \) is equal to \(c(g)c(h) \). Moreover, if \(g \) monic, \(c(g) \) is a function \(\mathbb{Q} \to \mathbb{Q} \). Hence \(gh \in \mathbb{Z}[x] \implies gh \in \mathbb{Z}[x] \) because \(c(g)c(h) = \text{something} \). \(\Box \)

If \(f \) \text{ is an integer, obviously irreducible.}
\text{If } \gcd(\text{coeffs}) \neq 1, \text{ obviously reducible.}
\text{If } \gcd(\text{coeffs}) = 1 \text{ and } f \in \mathbb{Z}[x] \text{ reducible, have}

\[f = gh = c(g)h_0 g_0 h_0. \]

\(c(g)h_0 \) is an integer — divide all \(\text{coeffs} \) of 1, so \(c(g)h_0 \) \(= 1 \). This gives factorization of \(f \). \(\Box \)
Studying curves over \(\mathbb{Z} \): When is \(f \in \mathbb{Z}[x] \) irreducible? Some tools:

Let \(f(x) = a_n x^n + \cdots + a_0 \). Suppose \(p \mid a_n \) and that \(f \) is reducible in \(\mathbb{Z}[x] \). Then \(f \) is reducible in \(\mathbb{F}_p[x] \).

Remark: \(\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \).

Proposition: \(f \) reducible in \(\mathbb{Z}[x] \) if and only if \(f = gh \), where \(g, h \in \mathbb{Z}[x] \) and \(\deg(g) \geq 1, \deg(h) \geq 1 \).

Then \(f = gh \) in \(\mathbb{F}_p[x] \), since \(\mathbb{Z}[x] \to \mathbb{F}_p[x] \), \(\mathbb{Z}[x^2] \to \mathbb{F}_p[x^2] \) is a ring homomorphism.

If \(g(x) = b_n x^n + \cdots + b_0 \), \(h(x) = c_n x^n + \cdots + c_0 \), the hypothesis \(p \mid a_n \Rightarrow p \mid b_n, p \mid c_0 \) implies \(\deg(g) = \deg(h) \).

Note that if \(f = gh \) over \(\mathbb{Q} \), we can assume \(g, h \in \mathbb{Z}[x] \), because

\[
f = (c_1 g)(c_2 h) g_0 h_0.
\]

So the method of proof above shows:
Can let \(f \in \mathbb{Z}[x] \) be leading coefficient of \(f \). If \(\exists \) prime \(p \) s.t.

\[
p \nmid a_n
\]

\[
f \text{ is irreducible mod } p
\]

then \(f \) is irreducible over \(\mathbb{Q} \).

For this reason, it's good to have an arsenal of irreducible polynomials mod \(p \). The sieve method (of Eratosthenes) is an efficient way to list them.

Ex. If \(f = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \) and each \(a_i \) is odd, \(f \) is irreducible. You can actually see this easily: if \(x \) is even, \(f(x) \) is odd. If \(x \) is odd, so is \(f(x) \). Equivalently, reduce mod \(p = 2 \), and observe that \(x^2 + x + 1 \) has no roots mod 2.

Remark: A lot of lectures skip checks of irreducibility at \(\deg f \leq 3 \) polynomials — since if \(\deg f \leq 3 \) and \(f \) has no roots, \(f \) is irreducible. Of course, if \(\deg f > 4 \), even if \(f \) has no roots, \(f \) may still be reducible. (Ex: \(f = (\text{quadratic}) \times (\text{quadratic}) \).)
Here's another good (often used) way to conclude whether a polynomial is irreducible. It's a very special case, when \(f(x) \) equals \(a_n x^n \mod p \), (with special constant term in \(\mathbb{Z} \)):

Rabin's Irreducibility Criterion

Let

\[f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x] \]

and suppose \(p \) prime \(p \) s.t.

\[\cdot \quad f(x) = a_n x^n \mod p, \quad a_n \neq 0 \]

\[\cdot \quad p^2 \nmid a_0. \]

Then \(f \) is irreducible over \(\mathbb{Z} \).

Note: This differs from other techniques, which need an arsenal of irreducible polynomials mod \(p \). On the other hand, very few satisfy these criteria — how often are all the lesser coefficients multiples of \(p \)? Not often.
Example let \(\Phi_p(x) = x^{p-1} - \cdots - x + 1 \) be the \(p \)-th cyclotomic polynomial. The reason \(\Phi_p(x) \) is important:

\[
(x-1) \Phi_p(x) = x^p - 1
\]

so (along with \(x = 1 \)) the roots of \(\Phi_p(x) \) are \(p \)-th roots of unity.

Consider the translation automorphism \(x \mapsto y+1 \). Then

\[
(x-1) \Phi_p(x) = y \Phi_p(y+1)
\]

\[
= (y+1)^p - 1
\]

\[
= y^p + \sum_{k=1}^{p-1} \binom{p}{k} y^k + 1 - 1
\]

\[
= y \left(y^{p-1} + \sum_{k=2}^{p-2} \binom{p}{k} y^{k-1} + \binom{p}{p-1} \right)
\]

Here \(\Phi_p(y+1) = y^{p-1} + \sum_{k=2}^{p-2} \binom{p}{k} y^{k-1} + \frac{\binom{p}{p-1}}{y} \) is not divisible by \(p \).

By Eisenstein, \(\Phi_p(y+1) \) is irreducible over \(\mathbb{Q} \). Since \(\Phi_p(y+1) \) is monic, it is irreducible over \(\mathbb{Z} \) (since gcd(coefs) ≠ ±1).

Since \(x \mapsto y+1 \) is an automorphism of \(\mathbb{Z}[x] \), \(\Phi_p(x) \) is irreducible over \(\mathbb{Z} \).