Lecture 17: Limits, colimits, and some rings

17.1. Colimits.

Definition 17.1. A diagram in \(C \) is a functor \(F : \mathcal{D} \to C \). We say \(F \) is a diagram of shape \(\mathcal{D} \).

Example 17.2. Let \(\mathcal{D} = * \coprod * \) be the category with two objects and only identity morphisms. A diagram in the shape of \(\mathcal{D} \) picks out two objects \(X, X' \) of \(C \).

Definition 17.3. Fix a category \(\mathcal{D} \). The (left) cone category on \(\mathcal{D} \), denoted \(\mathcal{D}^\circ \), is the category where

1. \(\text{Ob} \mathcal{D}^\circ := \text{Ob} \mathcal{D} \coprod \{ * \} \)
2. \(\text{hom}_{\mathcal{D}^\circ}(X, Y) := \begin{cases} \text{hom}_\mathcal{D}(X, Y) & X, Y \in \text{Ob} \mathcal{D} \\ pt & Y = * \\ \emptyset & \text{otherwise} \end{cases} \)

Note, for instance, that even if \(\mathcal{D} \) already has a terminal object, \(\mathcal{D}^\circ \) has a new terminal object, and it is not isomorphic to the original terminal object of \(\mathcal{D} \).

Note also that composition is forced upon you, as the only new morphism spaces are empty or are singletons.

Example 17.4. With \(\mathcal{D} \) as above, \(\mathcal{D}^\circ \) looks as follows:

\[
\begin{array}{c}
\ast \\
\downarrow \\
\ast \rightarrow \ast
\end{array}
\]
Lecture 17: Limits, Colimits, and Some Rings

Definition 17.5. Fix a diagram $F : \mathcal{D} \to \mathcal{C}$. Then define

$$\text{Fun}_D(\mathcal{D}^p, \mathcal{C})$$

to be the category where

1. An object is a functor $F' : \mathcal{D}^p \to \mathcal{C}$ such that $F'|_\mathcal{D} = F$; i.e., the restriction to \mathcal{D} is the original diagram.
2. A morphism is a natural transformation $\eta : F' \to F''$ such that $\eta|_\mathcal{D} = \text{id}_F$; i.e., the restriction to \mathcal{D} is just the identity natural transformation.

Remark 17.6. The notation does not indicate the dependence on F.

Example 17.7. Continuing the previous example, an object of $\text{Fun}_D(\mathcal{D}^p, \mathcal{C})$ picks out a diagram of the shape

$$\begin{array}{ccc}
X & \xrightarrow{f'} & Z \\
\downarrow{f'} & & \downarrow{g'} \\
X' & \xleftarrow{g'} & Z
\end{array}$$

and a morphism in this category picks out a commutative diagram as follows:

$$\begin{array}{ccc}
X & \xrightarrow{f} & W \\
\downarrow{f''} & & \downarrow{g''} \\
X' & \xleftarrow{g'} & Z
\end{array}$$

Definition 17.8. Fix a category \mathcal{E}. An initial object in \mathcal{E} is an object X such that $\text{hom}(X, Y) = pt$ for any $Y \in \mathcal{E}$.

Note any two initial objects are isomorphic.

Definition 17.9. Fix a diagram $F : \mathcal{D} \to \mathcal{C}$. A colimit for F is an initial object of the category $\text{Fun}_D(\mathcal{D}^p, \mathcal{C})$.
Example 17.10. Continuing the previous example, an initial object of \(\text{Fun}_D(D, \mathcal{C}) \) is some diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f'} & X' \\
\downarrow & & \downarrow \quad g' \\
 & Z & \quad f'' \\

downarrow g'' & & \downarrow h \\
& \quad W &
\end{array}
\]

such that for any other diagram (below indicated using \(f'', g'', W \)) there is a unique morphism \(h: Z \rightarrow W \) making the following commute:

\[
\begin{array}{ccc}
X & \xrightarrow{f'} & X' \\
\downarrow f'' & & \downarrow g'' \\
& Z & \quad W \\

downarrow h & & \downarrow h \\
& \quad
\end{array}
\]

Definition 17.11. A colimit in the shape of \(D = * \coprod * \) is called a coproduct in \(\mathcal{C} \).

17.2. Limits. One can likewise define limits as an initial object in

\[\text{Fun}_{D^{\text{op}}}(D^{\text{op}}, \mathcal{C}^{\text{op}}). \]

But this is opaque. Here are the dual constructions to define limits, spelled out:

Definition 17.12. Fix a category \(D \). The (right) cone category on \(D \), denoted \(D^{\triangleleft} \)

is the category where

\[
\begin{align*}
(1) \quad \text{Ob } D^{\triangleleft} := & \{ * \} \coprod \text{Ob } D \\
(2) \quad \text{hom}_{D^{\triangleleft}}(X, Y) := & \begin{cases}
\text{hom}_D(X, Y) & X, Y \in \text{Ob } D \\
p t & X = * \\
\emptyset & \text{otherwise}
\end{cases}
\end{align*}
\]

Example 17.13. With \(D \) as above, \(D^{\triangleleft} \) looks as follows:

\[
\begin{array}{ccc}
* & \xrightarrow{*} & * \\
\downarrow & & \downarrow \\
* & & *
\end{array}
\]
Definition 17.14. Fix a diagram $F : \mathcal{D} \to \mathcal{C}$. Then define
\[
\text{Fun}_\mathcal{D}(\mathcal{D}^\downarrow, \mathcal{C})
\]
to be the category where
\begin{enumerate}
\item An object is a functor $F' : \mathcal{D}^\downarrow \to \mathcal{C}$ such that $F'|_\mathcal{D} = F$; i.e., the restriction to \mathcal{D} is the original diagram.
\item A morphism is a natural transformation $\eta : F' \to F''$ such that $\eta_\mathcal{D} = \text{id}_F$; i.e., the restriction to \mathcal{D} is just the identity natural transformation.
\end{enumerate}

Definition 17.15. Fix a category \mathcal{E}. A terminal object in \mathcal{E} is an object Y such that $\text{hom}(X, Y) = \text{pt}$ for any $X \in \mathcal{E}$.

Definition 17.16. Fix a diagram $F : \mathcal{D} \to \mathcal{C}$. A limit for F is a terminal object of the category $\text{Fun}_\mathcal{D}(\mathcal{D}^\downarrow, \mathcal{C})$.

Table 3. Some notation. Note that the word “limit” can be used to describe both limits and colimits in the literature; the words “inverse” or “directed” give indication of whether one’s talking about limits or colimits.

<table>
<thead>
<tr>
<th>Colimits</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{colim}(F : \mathcal{D} \to \mathcal{C})$</td>
<td>$\text{lim}(F : \mathcal{D} \to \mathcal{C})$</td>
</tr>
<tr>
<td>$\text{colim}_\mathcal{D} F$</td>
<td>$\text{lim}_\mathcal{D} F$</td>
</tr>
<tr>
<td>$\text{colim} F$</td>
<td>$\text{lim} F$</td>
</tr>
<tr>
<td>$\text{lim}_\to \mathcal{D}$</td>
<td>$\text{lim}_{\to} \mathcal{D}$</td>
</tr>
<tr>
<td>“directed limit”</td>
<td>“inverse limit”</td>
</tr>
</tbody>
</table>

17.3. Exercises.

Exercise 17.17. Articulate the universal property of quotients of R-modules using colimits.

Exercise 17.18. Articulate the p-adic integers as a limit in rings.

Solutions: Fix $f : A \to B$ a map of R-modules and $\pi : B \to B/f(A)$ the quotient map. The universal property of quotients $B/f(A)$ says that for any map $\phi : B \to C$ of R-modules for which $\ker \phi \supset f(A)$, there is a unique morphism $\phi' : B/f(A) \to C$ such that $\phi' \circ \pi = \phi$.

But the requirement \(\ker \phi \supset f(A) \) is the expressing the commutativity of the following diagram:

\[
\begin{array}{c}
A \\
\downarrow \downarrow
\end{array}
\begin{array}{c}
B \\
\downarrow \phi
\end{array}
\]

And the universal property is expressing the uniqueness of \(\phi' \) in the commutative diagram below:

\[
\begin{array}{c}
A \\
\downarrow \downarrow
\end{array}
\begin{array}{c}
B \\
\downarrow \phi
\end{array}
\]

So \(\mathcal{D} = \ast \leftarrow \ast \rightarrow \ast \) is the shape, and any functor \(\mathcal{D} \to RMod \) looking like

\[
\begin{array}{c}
A \\
\downarrow \\
0
\end{array}
\begin{array}{c}
B \\
\downarrow \phi
\end{array}
\]

has a colimit given by the quotient \(B/f(A) \) (equipped with the quotient map \(B \to B/f(A) \)).

As for the next exercise, the \(p \)-adics can be written as a limit

\[
\ldots \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}
\]

of a functor from \(\mathcal{D} = (\mathbb{Z}_{\leq 0}, \leq) \) to Rings.

Analogously, we have the sequence of rings

\[
\ldots \to \mathbb{C}[x]/x^3 \to \mathbb{C}[x]/x^2 \to \mathbb{C}[x]/x \cong \mathbb{C}
\]

whose limit is \(\mathbb{C}[[x]] \), the ring of power series. This sequence has a geometric interpretation: \(\mathbb{C}[x]/x \cong \mathbb{C} \) is the functions on the origin in \(\mathbb{A}^1 \) (the complex line), and \(\mathbb{C}[x]/x^n \) is the \((n - 1)\)st order neighborhood.